Note

Two-dimensional J-resolved ¹H-nuclear magnetic resonance spectroscopy of α,β -D-glucose at 500 MHz

WILLIAM CURATOLO*, LEO J. NEURINGER, DAVID RUBEN, AND RONALD HABERKORN

Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139 (U.S.A.)

(Received May 5th, 1982; accepted for publication, June 14th, 1982)

The use of 1 H-n.m.r. spectroscopy as a primary method for structural studies of carbohydrates has been hampered by the poor resolution of the nonanomeric resonances, which fall in a narrow-chemical shift range of ~ 1.0 p.p.m. Despite this limitation, much useful information about ring conformation and anomeric composition has been obtained from analysis of the anomeric resonances 1 . Furthermore, empirical correlation of the anomeric resonances of complex oligosaccharides with proposed or known structures has aided in structural confirmation 2 . In the case of simple sugars, some spectral information for the nonanomeric protons can be obtained by a combination of approaches, *e.g.*, selective deuteration 4 , or INDOR (indirect detection of resonance), and spectral simulation 5 .

Recently, two-dimensional n.m.r. techniques⁶ have been successfully applied to carbohydrates^{7,8}. These two-dimensional techniques provide large improvements in spectral resolution, and hold great promise for the advancement of n.m.r. spectroscopy as a nondestructive technique for structural studies of underivatized carbohydrates. In this Note, we present conventional and two-dimensional *J*-resolved spectra at 500 MHz of the simple anomeric mixture, α,β -D-glucose, in deuterium oxide. The spectral resolution obtained at 500 MHz is impressive, and provides encouragement that previously intractable carbohydrate structural problems will now be approachable.

In Fig. 1 is presented the nonanomeric region of the 500-MHz 1 H-n.m.r. spectrum of α,β -D-glucose. This spectrum has been resolution-enhanced by applying Lorentzian and Gaussian lineshape-transformations. The spectrum is almost completely resolved, and has been assigned by selective decoupling. The increased resolution obtained as a result of the high field-strength (500 MHz) is significant. For example, the 4α - 4β resonances at δ 3.43-3.38 are totally resolved at 500 MHz,

^{*}Fellow of the Muscular Dystrophy Association.

298 NOTE

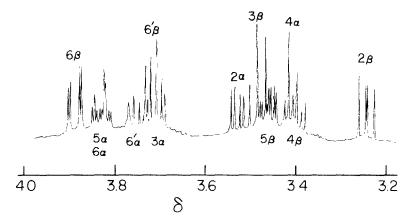


Fig. 1. Nonanomeric portion of the 500 MHz 1 H-n.m.r. spectrum of α,β -D-glucose for a deuterium oxide solution at 30 $^{\circ}$.

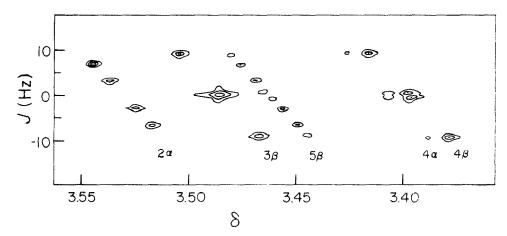


Fig. 2. Portion of the 500-MHz, two-dimensional *J*-resolved 1 H-n.m.r. spectrum of α,β -D-glucose at 30°. This spectrum was obtained with a 90°-N*T*-180°-N*T*-acquisition-pulse sequence, where *T* was 10 ms and N was incremented from 0 to 127: Sweep width, 3600; recycle delay, 1 s; number of acquisitions, 24; and size, 8192 data points.

whereas at 270 MHz (not shown) they are buried under a complex 3β – 5β – 4α – 4β envelope. Note that the 5α and 6α region (δ 3.85–3.81) is not first-order, even at 500 MHz.

Two-dimensional J-resolved spectroscopy is a technique used to increase the resolution available in an n.m.r. experiment by expanding the spectrum along a second dimension. The J-resolved spectrum of the nonanomeric region of α,β -D-glucose was obtained at 500 MHz. Fig. 2 presents a contour plot of the $2\alpha-3\beta-5\beta-4\alpha-4\beta$ region. Chemical shift and J-coupling values are on the abscissa, and J-coupling values alone on the ordinate. The individual multiplets are inclined at 45 with respect to each axis. In contrast to the one-dimensional spectrum, the H-5 β octet is completely resolved from the H-3 β multiplet, and all eight resonances appear.

TABLE I 1 H-n.m.r. spectral parameters for α, β -d-glucose

Chemical shifts $(\delta)^a$	Conformer		
	α	β	
H-1	5.228	4.640	
H-2	3.530	3.241	
H-3	3.709	3.485	
H-4	3.406	3.396	
H-5	b	3.463	
H-6	b	3.893	
H-6'	3.756	3.717	
Coupling			
constants (Hz)			
$J_{1,2}$	3.8	8.0	
$J_{2,3}$	9.9	9.2	
$J_{3,4}$	9.6	9.1	
$J_{4,5}$	9.6	9.8	
$J_{5,6}$	2.2	2.3	
$J_{5,6'}$	5.5	5.8	
$J_{6,6'}$	12.3	12.3	

^aRelative to the signal of 4,4-dimethyl-4-silapentane-1-sulfonic acid. ^bNot first order.

The H-4 α and -4 β resonances are completely resolved. Furthermore, increased resolution in the J-dimension clearly demonstrates that both H-4 α and -4 β are doublets of doublets, as expected, but not observed in the one-dimensional spectrum. The chemical shifts and J-couplings for α,β -D-glucose are summarized in Table I. These values are similar to those reported previously, but were obtained without selective deuteration⁴ or spectral simulation⁹. Our results with the simple sugar α,β -D-glucose demonstrate that the increased resolution afforded at 500 MHz will greatly increase the complexity of carbohydrate-structural problems that can be approached by two-dimensional J-spectroscopy.

EXPERIMENTAL

A solution of α-D-glucose (Sigma Chemical Co., St. Louis, MO 63178) in 99.8% deuterium oxide was lyophilized two times, and the residue finally dissolved in 100% deuterium oxide to give a 0.1m concentration. ¹H-N.m.r. experiments were performed with a home-built spectrometer operating at a proton-observe frequency of 500 MHz, as previously described¹⁰.

300 NOTE

ACKNOWLEDGMENTS

The n.m.r. facility at the Francis Bitter National Magnet Laboratory is supported by the Division of Research Resources of the National Institutes of Health (Grant RR-00995) and by the National Science Foundation.

REFERENCES

- 1 R. U. LEMIEUN AND J. D. STEVLNS, Can. J. Chem., 44 (1966) 249-262.
- 2 H. VAN HALBEEK, L. DORLAND, J. F. G. VLIEGENTHART, K. SCHMID, J. MONTREUIL, B. FOURNET, AND W. E. HULL, FEBS Lett., 114 (1980) 11–16.
- 3 R. E. COHEN AND C. E. BALLOU, Biochemistry, 19 (1980) 4345-4358.
- 4 H. J. KOCH AND A. S. PERLIN, Carbohydr, Rev., 15 (1970) 403-410.
- 5 A. DEBRUYN, M. ANTEUNIN, AND G. VERHEGGE, Carbohydr. Res., 41 (1975) 295-297.
- 6 W. P. AUE, E. BARTHOLDI, AND R. R. ERNST, J. Chem. Phys., 64 (1976) 2229-2246.
- 7 L. D. HALL, S. SUKUMAR, AND G. R. SULLIVAN, J. Chem. Soc., Chem. Commun., (1979) 292-294.
- 8 G. A. MORRIS AND L. D. HALL, J. Am. Chem. Soc., 103 (1981) 4703-4711.
- 9 S. J. PERKINS, L. N. JOHNSON, D. C. PHILLIPS, AND R. A. DWLK, Carbohydi. Res., 59 (1977) 19-34.
- 10 J. E. C. WILLIAMS, L. J. NEURINGER, E. BOBROV, R. WEGGLL, D. J. RUBEN, AND W. G. HARRISON, Rev. Sci. Instrum., 52 (1981) 649-656.